Multilayer bootstrap network for unsupervised speaker recognition
نویسنده
چکیده
We apply multilayer bootstrap network (MBN), a recent proposed unsupervised learning method, to unsupervised speaker recognition. The proposed method first extracts supervectors from an unsupervised universal background model, then reduces the dimension of the high-dimensional supervectors by multilayer bootstrap network, and finally conducts unsupervised speaker recognition by clustering the low-dimensional data. The comparison results with 2 unsupervised and 1 supervised speaker recognition techniques demonstrate the effectiveness and robustness of the proposed method.
منابع مشابه
Unsupervised model compression for multilayer bootstrap networks
Recently, multilayer bootstrap network (MBN) has demonstrated promising performance in unsupervised dimensionality reduction. It can learn compact representations in standard data sets, i.e. MNIST and RCV1. However, as a bootstrap method, the prediction complexity of MBN is high. In this paper, we propose an unsupervised model compression framework for this general problem of unsupervised boots...
متن کاملUniversal Background Sparse Coding and Multilayer Bootstrap Network for Speaker Clustering
We apply multilayer bootstrap network (MBN) to speaker clustering. The proposed method first extracts supervectors by a universal background model, then reduces the dimension of the high-dimensional supervectors by MBN, and finally conducts speaker clustering by clustering the low-dimensional data. We also propose an MBN-based universal background model, named universal background sparse coding...
متن کاملImprovement of distant-talking speaker identification using bottleneck features of DNN
In this paper we propose bottleneck features of deep neural network for distant-talking speaker identification. The accuracy of distant-talking speaker recognition is significantly degraded under reverberant environment. Feature mapping or feature transformation has been shown efficacy in channel-mismatch speaker recognition. Bottleneck feature derived from multilayer network, which is a nonlin...
متن کاملCooperative supervised and unsupervised learning algorithm for phoneme recognition in continuous speech and speaker-independent context
Neural networks have been traditionally considered as an alternative approach to pattern recognition in general, and speech recognition in particular. There have been much success in practical pattern recognition applications using neural networks including multi-layer perceptrons, radial basis functions, and self-organizing maps (SOMs). In this paper, we propose a system of SOMs based on the a...
متن کاملMultilayer bootstrap networks.
Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.06095 شماره
صفحات -
تاریخ انتشار 2015